Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle.

نویسندگان

  • Robert A Frost
  • Gerald J Nystrom
  • Leonard S Jefferson
  • Charles H Lang
چکیده

Various atrophic stimuli increase two muscle-specific E3 ligases, muscle RING finger 1 (MuRF1) and atrogin-1, and knockout mice for these "atrogenes" display resistance to denervation-induced atrophy. The present study determined whether increased atrogin-1 and MuRF1 mRNA are mediated by overproduction of endogenous glucocorticoids or inflammatory cytokines in adult rats and whether atrogene expression can be downregulated by anabolic agents such as insulin-like growth factor (IGF)-I and the nutrient-signaling amino acid leucine. Both atrogin-1 and MuRF1 mRNA in gastrocnemius was upregulated dose and time dependently by endotoxin. Additionally, peritonitis produced by cecal ligation and puncture increased atrogin-1 and MuRF1 mRNA in gastrocnemius (but not soleus or heart) by 8 h, which was sustained for 72 and 24 h, respectively. Whereas the sepsis-induced increase in atrogin-1 expression was completely prevented by IGF-I, the increased MuRF1 was not altered. In contrast to the IGF-I effect, the sepsis-induced increased mRNA of both atrogenes was unresponsive to either acute or repetitive administration of leucine. Whereas exogenous infusion of TNF-alpha increased atrogin-1 and MuRF1 in gastrocnemius, pretreatment of septic rats with the TNF antagonist TNF-binding protein did not prevent increased expression of either atrogene. Similarly, whereas dexamethasone increased atrogene expression, pretreatment with the glucocorticoid receptor antagonist RU-486 failed to ameliorate the sepsis-induced increase in atrogin-1 and MuRF1. Thus, under in vivo conditions in mature adult rats, the sepsis-induced increase in muscle atrogin-1 and MuRF1 mRNA appears both glucocorticoid and TNF independent and is unresponsive to leucine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1 in skeletal muscle

Menconi MJ, Arany ZP, Alamdari N, Aversa Z, Gonnella P, O’Neal P, Smith IJ, Tizio S, Hasselgren P. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1 in skeletal muscle. Am J Physiol Endocrinol Metab 299: E533–E543, 2010. First published July 20, 2010; doi:10.1152/ajpendo.00596.2009.—Muscle wasting during sepsis is at least in part regulated by glucocorticoids ...

متن کامل

PPARβ/δ Regulates Glucocorticoid- and Sepsis-Induced FOXO1 Activation and Muscle Wasting

FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atro...

متن کامل

Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1beta in skeletal muscle.

Muscle wasting during sepsis is at least in part regulated by glucocorticoids and is associated with increased transcription of genes encoding the ubiquitin ligases atrogin-1 and muscle-specific RING-finger protein-1 (MuRF1). Recent studies suggest that muscle atrophy caused by denervation is associated with reduced expression of the nuclear cofactor peroxisome proliferator-activated receptor-γ...

متن کامل

Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1

Stimulation of the ubiquitin-proteasome pathway-especially E3 ubiquitin ligases Atrogin-1 and MuRF1-is associated with muscle loss in diabetes. Elevated lipid metabolites impair myogenesis. Oligonol, a low molecular weight polyphenol derived from lychee, exhibited anti-diabetic and anti-obesity properties, suggesting it could be a proper supplement for attenuating muscle loss. Dietary (10 weeks...

متن کامل

Acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA without increasing proteolysis in skeletal muscle.

Acute alcohol intoxication decreases muscle protein synthesis, but there is a paucity of data on the ability of alcohol to regulate muscle protein degradation. Furthermore, various types of atrophic stimuli appear to regulate ubiquitin-proteasome-dependent proteolysis by increasing the muscle-specific E3 ligases atrogin-1 and MuRF1 (i.e., "atrogenes"). Therefore, the present study was designed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007